Skip to main content
Orsola Capovilla-Searle Profile photo

Orsola Capovilla-Searle

Assistant Professor
Department of Mathematics

Orsola Capovilla-Searle

Assistant Professor
Department of Mathematics

Orsola Capovilla-Searle earned her PhD at Duke University in 2021 under the direction of Lenny Ng. She was an NSF graduate fellow. From Fall 2021 to Spring 2025 she was an NSF Postdoc at UC Davis and a Krenner Visiting Assistant Professor.

Research

Capovilla-Searle's research interests are in the fields of low dimensional symplectic and contact topology. Capovilla-Searle's research focuses on structures in symplectic and contact geometry( Legendrian knots, Lagrangian surfaces, Weinstein domains). She has a joint appointment in the college of engineering in robotics.

Education

PhD Duke University 2021 Mathematics

Publications

  • ``Decompositions of augmentation varieties via weaves and rulings," J. Asplund, O. Capovilla-Searle, J. Hughes, C. Leverson, W. Li, and A. Wu. Preprint available at arXiv:2508.20226 (preprint posted 2025).
  • ``Augmentations, fillings and clusters of 2-bridge links," O. Capovilla-Searle, J. Hughes, D. Weng. Selecta Math. (Accepted). Available at arXiv:2308.11858 (preprint posted 2023)
  • ``Exact Lagrangian tori in symplectic Milnor fibers constructed with fillings", O. Capovilla-Searle. Algebraic and Geometric Topology, volume 25, n 6. Available at arXiv:2201.03081 (2025).
  • ``Weinstein handlebodies for complements of smoothed toric divisors", B. Acu, O. Capovilla-Searle, A. Gadbled, A. Marinkovic, E. Murphy, L. Starkston, A. Wu. Memoirs of the AMS. Available at arxiv: 2012.08666 (2025).
  • ``Lagrangian cobordism of positroid links," J Asplund, Y. Bae, O. Capovilla-Searle, M. Castronovo, C. Leverson, A. Wu. Pacific Journal of Mathematics. Available at arXiv:2305.16232 (2024)
  • ``Obstructions to reversing Lagrangian surgery in Lagrangian fillings", O. Capovilla-Searle, N. Legout, M. Limouzineau, E. Murphy, Y. Pan, L. Traynor. Journal of Symplectic Geometry. Available at arXiv:2207.13205 (2024)
  • ``On Newton Polytopes of Lagrangian augmentations," O. Capovilla-Searle, R. Casals. Bulletin London of Mathematical Society. Available at arXiv:2306.03888 (2023)
  • ``An Introduction to Weinstein handlebodies for complements of smoothed toric divisors", B. Acu, O. Capovilla-Searle, A. Gadbled, A. Marinkovic, E. Murphy, L. Starkston, A. Wu. Research directions in Symplectic and Contact Geometry and Topology, Springer, edited by B. Acu, C. Cannizo, D. McDuff, Z. Myer, Y. Pan, and L. Traynor (2022)
  • ``Non-orientable Lagrangian Endocobordisms", O. Capovilla-Searle, L. Traynor. Pacific J. Math. 285, 319-343. Available at arXiv:1508.02609 (2016)
  • ``Multi-crossing Number for Knots and the Kauffman Bracket Polynomial", C. Adams, O. Capovilla-Searle, J. Freeman, D. Irvine, S. Petti, D. Vitek, A. Weber, S. Zhang. Mathematical Proceedings of the Cambridge Philosophical Society, 1-32. Available at arXiv:1407.4485 (2016)
  • ``Bounds on Uber and Petal Numbers", C. Adams, O. Capovilla-Searle, J. Freeman, D. Irvine, S. Petti, D. Vitek, A. Weber, S. Zhang. Journal of Knot Thoery and its Ramifications, Volume No.24, Issue No. 2. Available at arXiv:1311.0526 (2015)